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Abstract. In many graph-based semi-supervised learning algorithms,
edge weights are assumed to be fixed and determined by the data points’
(often symmetric) relationships in input space, without considering di-
rectionality. However, relationships may be more informative in one di-
rection (e.g. from labelled to unlabelled) than in the reverse direction,
and some relationships (e.g. strong weights between oppositely labelled
points) are unhelpful in either direction. Undesirable edges may reduce
the amount of influence an informative point can propagate to its neigh-
bours – the point and its outgoing edges have been “blunted.” We present
an approach to “sharpening” in which weights are adjusted to meet an
optimization criterion wherever they are directed towards labelled points.
This principle can be applied to a wide variety of algorithms. In the cur-
rent paper, we present one ad hoc solution satisfying the principle, in
order to show that it can improve performance on a number of publicly
available benchmark data sets.

1 Introduction

Given sets of labelled and unlabelled data points, the task of predicting the
missing labels can under some circumstances be aided by the information from
unlabelled data points, for example by using information about the manifold
structure of the data in input space. Many state-of-the art methods implement
a semi-supervised learning (SSL) approach in that they incorporate information
from unlabelled data points into the learning paradigm—see [3,6,24,23,17,5].
Our focus will be on a graph-based SSL approach. Despite their many differ-
ences as regards both guiding philosophy and performance, one thing common
to most algorithms is the use of a matrix of values representing the pairwise re-
lationships between data points. In graph-based SSL, the matrix of edge weights
often denoted as W reflects the points’ influence on each other,1 which is an
1 Many such systems are equivalent to a form of spreading activation network in which

information is propagated around the graph.
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inherently directional concept. The graph may therefore in principle be asym-
metric. It is typically a sparse matrix. By contrast, in kernel-based methods like
the TSVM [21,13,10], the kernel K denotes the points’ similarity to each other,
an intrinsically symmetrical property.

When adopting the kernel approach we can utilize the recent approaches of
learning the kernel matrix [9,15,8,20,18]. In particular, the methods of [22] and
[1] are focused on the use of unlabelled as well as labelled data. Using a ker-
nel method requires that the similarity matrix satisfy the conditions of positive
definiteness and symmetry to be a valid kernel [16]. It will often be a dense ma-
trix. Most kernel learning methods are computationally demanding because of
the operations involved on dense matrices–simply computing the product of two
dense matrices already takes O(n3). It is possible to fit graph-based representa-
tions of pairwise relationships into a kernel-learning framework. One can directly
calculate K from a graph using the diffusion kernel method [14], but this gener-
ally requires fairly expensive computation. Alternatively one can simply define
similarity from the outset in terms of the graph, taking a simple formula such
as K = W�W—note that this already entails a decrease in sparseness.

One of the merits of graph-based SSL lies in its computational efficiency:
learning can often be done by solving a linear system with a sparse matrix W ,
which is nearly linear in the number of non-zero elements in W [19]. To preserve
this advantage, it will be desirable that learning or manipulating W be achieved
directly, without going via the route of learning a graph-based kernel matrix. To
the best of our knowledge there have been relatively few approaches to learning
the weights W of a graph, Zhu et al [24]’s being a notable exception. They ad-
dress the issue of manipulating the edge weights, by a computationally intensive
procedure for learning the scaling parameters of the Gaussian function that best
aligns W with the data. The width parameters reflect the importance of input
features, which makes their approach useful as a feature selection mechanism.

In this paper, we present a method which is immediately applicable to the
weight matrix W . The proposed method is based on the following intuition.
In an undirected graph, all connections are reciprocated and so the matrix of
edge weights W is symmetric. However, when W describes relationships between
labelled and unlabelled points, it is not necessarily desirable to regard all such
relationships as symmetric. Some edges may convey more useful information
in one direction (e.g. from labelled to unlabelled) than in the reverse direction.
Propagating activity in the reverse direction, from unlabelled to labelled, may be
harmful since it allows points about which information is uncertain to corrupt
the very source of information in the system. Since we are already using the
language of “points” and “edges”, we will say that this causes the point and
its outgoing edges to be “blunted”, reducing their effectiveness. There are many
problem settings (for example protein function prediction and other applications
in the field of bio-informatics) in which (a) there is a high degree of certainty
about the input-space representation of each labelled point and its label, and (b)
the number of labelled points is very low. In such a situation, it seems intuitively
desirable to avoid blunting, to preserve the effectiveness of the precious sources of



404 H. Shin et al.

information. Propagation of information between unlabelled points is a different
issue—while some edges of the graph may be more helpful than others in solving
the overall problem, a priori we do not know which these might be. Allowing the
unlabelled points to harmonize themselves with their neighbours (implementing
the assumption of smoothness common to most such learning approaches) is a
desirable process.

To confirm this intuition, we begin with the well-known graph-based SSL
formulation of [2] using Tikhonov regularization. First, we re-formulate the ob-
jective function in terms of W . Blockwise consideration of the weight matrix
will allow us to state a condition which solutions W must satisfy if the objective
function is to be optimized—there are many such solutions, some of which will
be trivial and not lead to learning. Exploring the class of solutions, and devel-
oping a basis for comparison of their potential generalization ability, is beyond
the scope of this paper and is left as an open problem. However, we propose one
very simple specific solution, concordant with the logic already stated. Blockwise
analysis of the inverse matrix used to make predictions will show the implica-
tions of this solution for the unlabelled points. This in turn makes clear the link
between the Tikhonov regularization formulation we started with and the har-
monic function solution to the Gaussian random field formulation as presented
by [24].

The paper is organized as follows. In section 2, we briefly introduce the graph-
based SSL algorithm under consideration. In section 3, we present the proposed
idea in detail, and provide an ad hoc solution as a preliminary work, showing
the connection to an earlier work based on harmonic function. In section 4, we
show experimental results: illustrating the effects before and after the removal
of the undesired weights. We summarize and conclude in section 5.

2 Graph-Based Semi-supervised Learning

A data point xi (i = 1, . . . , n) is represented as a node i in a graph, and the
relationship between data points is represented by an edge where the connection
strength from each node j to each other node i is encoded in element wij of
a weight matrix W . Often, a Gaussian function of Euclidean distance between
points, with length scale σ, is used to specify connection strength:

wij =
{ exp

(
− (xi−xj)�(xi−xj)

σ2

)
if i ∼ j,

0 otherwise.

The i ∼ j stands for node i and j has an edge between them which can be
established either by k nearest neighbors or by Euclidean distance within a
certain radius r, ||xi − xj ||2 < r. 2 The labelled nodes have labels yl ∈ {−1, 1},

2 We represents scalars as lower case, vectors as boldface lower case, and martrices
are uppercase. 0 (or 1) are a vector or matrix of variable-dependent size containing
of all zeros (or ones).
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while the unlabeled nodes have zeros yu = 0. Our algorithm will output an n-
dimensional real-valued vector f = [f�

l f�
u ]� = (f1, · · · , fl, fl+1, · · · , fn=l+u)�.

which can be thresholded to make label predictions on fl+1, . . . , fn after learning.
It is assumed that (a) fi should be close to the given label yi in labelled nodes,
and (b) overall, fi should not be too different from fj of adjacent nodes (i ∼ j).
One can obtain f by minimizing the following quadratic functional [2]:

l∑
i=1

(fi − yi)2 + μ

n∑
i,j=1

wij(fi − fj)2 + μu

n∑
i=l+1

f2
i . (1)

The first term corresponds to the loss function in terms of condition (a), and
the second term represents the smoothness of the predicted outputs in terms of
condition (b). The parameter μ (and μu) trades off loss versus smoothness. The
last term is a regularization term to keep the scores of unlabelled nodes in a
reasonable range. Alternative choices of smoothness and loss functions can be
found in [6]. Hereafter, we focus on the special case of μu = 1 [23] so that it
is incorporated into the loss function. Then, the three terms degenerate to the
following two:

min
f

(f − y)�(f − y) + μfT Lf , (2)

where y = (y1, . . . , yl, 0, . . . , 0)�, and the matrix L, called the graph Laplacian
matrix [7], is defined as L = D−W where D = diag(di), di =

∑
j wij . Instead of

L, the normalized Laplacian, L̃ = D− 1
2 LD− 1

2 can be used to get a similar result
[7]. The solution of this problem is obtained as

f = (I + μL)−1y (3)

where I is the identity matrix.
The values of f are obtained by solving a large sparse linear system y =

(I +μL)f . This numerical problem has been intensively studied, and there exist
efficient algorithms, of which computational time is nearly linear in the number
of nonzero entries in the coefficient matrix [19]. Therefore, the computation gets
faster as the Laplacian matrix gets sparser.

3 Sharpening the Edges

3.1 Optimal Weight Matrix

Equation (3) gives us a closed-form solution that minimizes the objective func-
tion with respect to f for a given μ and fixed W . We now pose the question:
what if W is not considered fixed? Is it possible to change some or all of the wij

such that our algorithm performs better? We begin by re-formulating our objec-
tive function in terms of W . The smoothness term of (2) can also be expressed
as

μf�Lf = f�y − f�f , (4)
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by using f�(I + μL)f = f�y which follows from (I + μL)f = y from (3).
Plugging (4) into (2) we have

min
W

(f − y)�(f − y) + μf�Lf

= (f − y)�(f − y) + f�y − f�f

= y�y − y�f

= y�y − y�(I + μL)−1y. (5)

The constant term y�y does not affect our optimization. Eliminating this con-
stant term and negating, (5) becomes

max
W

d(W ) = y�(I + μL)−1y, (6)

s.t. W ≥ 0,

where the non-negativeness constraint of W is introduced from the natural as-
sumption of semi-supervised learning. Given an undirected graph, (6) is a con-
vex problem since W and hence (I + μL)−1 are positive symmetric—a function
z(A) = Ap of a positive symmetric matrix A is convex for −1 ≤ p ≤ 0 or
1 ≤ p ≤ 2 [4]. Since we wish to consider asymmetric W , we cannot guarantee
convexity. We could optimize W by a gradient descent method, the derivative
of (6) with respect to wij being equal to by μgi(fi−fj), where g = (I+μL�)−1y
and f is given as usual by (3). However, without imposing some additional con-
straint, one can see that the problem has trivial solutions since any diagonal W
gives an optimal value by leading (I + μL)−1 to the identity matrix. Removal of
all the weights clearly does not fit the goals of learning since no generalization
will be possible if no information is propagated between nodes.

Optimization must proceed under some constraints which reflect our prior
assumptions about the problem. Consideration of the block structure of the
problem will allow us to implement the intuition expressed in section 1 and
indicate parts of the weight matrix W that can be optimized, without running
foul of the “no free lunch” limitation. First, note that the most part of (6) that

involve yu simply vanish since y =
[

yl

yu

]
=

[
yl

0

]
. Accordingly, (6) is simplified

by (3) and becomes

max
W

d(W ) = y�
l f l, (7)

s.t. W ≥ 0,

which implies that the objective is simply to maximize the dot product of yl and
f l with respect to weight matrix W . Given that all fi must satisfy −1 ≤ fi ≤ 1
[12,24], the solution that maximizes d(W ) must clearly satisfy yl = f l. Next, let
us represent the weight matrix as a block matrix,

W =
[

Wll Wlu

Wul Wuu

]
.
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Remember that, in the interpretation of W as a matrix of edge weights in a
directed graph, the row index denotes the destination and the column index the
source—so for example Wlu should be read as “the weights of the edges from
unlabelled to labelled points, u → l.” For notational simplicity, let us also define
M = (I + μL), which has similar blockwise structure:

M =
[

Mll Mlu

Mul Muu

]
(8)

=
[

I + μ(Dll − Wll) −μWlu

−μWul I + μ(Duu − Wuu)

]
.

Rearranging (3) in terms of y and writing it in a similar blockwise fashion, we
obtain : [

yl

yu

]
=

[
Mll Mlu

Mul Muu

] [
f l

fu

]
(9)

Considering only the top row, we obtain the following relationship between yl

and f l:

yl = [I + μ(Dll − Wll)] f l − μWlufu. (10)

from which we see by substituting the optimal solution f l = yl, that the condi-
tion

(Dll − Wll)yl = Wlufu, (11)

must hold. Equally, any solution that satisfies (11) is also optimal. This begins
to show the role of the individual blocks of W in finding a solution. To express
(11) solely in terms of block matrices, we use the block inverse of M ,

M−1 = (12)[
M−1

ll + M−1
ll MluS−1MulM

−1
ll −M−1

ll MluS−1

−S−1MulM
−1
ll S−1

]

where S is the Schur complement (see [4]) of Mll in M ,

S = Muu − MulM
−1
ll Mlu. (13)

With f l = yl, this yields
[
M−1

ll + M−1
ll MluS−1MulM

−1
ll − I

]
︸ ︷︷ ︸

(a)

yl = 0 (14)

from which we see that there exist a potentially large class of solutions that
satisfying this condition—the right hand side of (11) may be matched to the
left through manipulation of any of the four blocks of W , to affect fu. So far,
however, it seems intractable to calculate a general solution class for this complex
system.
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3.2 An Ad-Hoc Solution

In this paper, we present an ad hoc solution for the optimal condition (11) as a
preliminary work. This simplest and blockwise form of solution will be used in
our experiment to exemplify the effect of the condition. Many solutions can be
obtained from non-zero matrix of (a) in (14), however, we focus on a subset of
solutions by confining (a) to be 0.

As we mentioned earlier, any W as a form of diagonal matrix produces optimal
value of (6) or (7). More concisely speaking, both Wll and Wuu can be any
diagonal matrices, while Wlu and Wul should be null matrices. However, no one
wants to compensate a null vector of fu as a return for holding the condition
(11). Thus, let us selectively decide which block matrix can be null matrix or
diagonal, by examining

fu = −S−1MulM
−1
ll yl. (15)

First, note that Mul should not be a null matrix thus Wul �= 0 from (8), fu

will be 0 otherwise. Second, M−1
ll will not matter unless Mll is singular, which

implies we can regard Wll as a diagonal matrix and Wlu as a null matrix. Then
Mll becomes an identity matrix. Next, let us take S−1 into consideration. With
Wll as a diagonal matrix, Wlu as a null matrix, and Wul as a non-zero matrix,
S defined in (13) will not be singular:

S = I + μ(Duu − Wuu).

This allows Wuu to be a diagonal matrix. However, one should be careful of
setting Wuu be a diagonal matrix which will lead to

fu = μWulyl. (16)

This means we cannot obtain the output prediction for the unlabelled data points
unless they are directly connected to labelled points. Remembering that W is
a sparse matrix in graph-based semi-supervised learning, we hardly expect full
connection from labelled to unlabelled points. Therefore, we should not allow
Wuu to be a diagonal matrix. Note that if Wul is a full matrix, (16) stands for
output prediction by k-nearest neighbor method. To summarize, by setting Wll

to a non-negative diagonal matrix (including null matrix) and Wlu to 0,

Ws =
[
diagonal matrix 0

Wul Wuu

]
, (17)

we can satisfy the condition (11) but still expect to obtain meaningful output
prediction for unlabelled data points

fu = μ(I + μ(Duu − Wuu))−1Wulyl. (18)
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In spreading activation network terms, is equivalent to activity being propa-
gated from labelled to unlabelled data once (Wulyl) to set the initial condition
for subsequent spreading activation among u ↔ u, analogous to (3) but now
excluding the labelled points. This also has intuitive appeal. First, for labelled
points, it assures f l = yl— there is no loss of information on labelled data
points . By disconnecting unnecessary and unhelpful edges, we allow the labelled
points and their outgoing edges to stay “sharp” in their influence on the rest of
the network. Second, for unlabelled points, it preserves an important principle
of SSL, namely exploitation of the manifold structure inferred from unlabelled
data points, by keeping the edges, u ↔ u and l → u, of W .

3.3 Harmonic Functions Revisited

The condition (11) provides a link to the formulation of [24], which characterized
semi-supervised learning in terms of a harmonic function solution to an energy
minimization problem. Particularly, the solution (18) is very similar to their
solution

fu = (Duu − Wuu)−1Wulyl,

to which our (18) converges as μ becomes arbitrarily large. But note that their
optimization proceeds from the a priori assumption that labels should be recon-
structed without loss, f l = yl. Unfortunately, in the general formulation (2) of
semi-supervised learning, it is not natural to hold this assumption due to the
smoothness term. In the light of that, (11) plays a role of bridge between two meth-
ods, [2] and [24]: we begin with the formulation of [2] and reach at the minimum-
energy solution of [24] without the necessity of assuming f l = yl a priori. Note
that in our formulation hyperparameter μ naturally remains from (3) through to
(18) and can be tuned to the needs of each particular learning problem.

4 Experiment

We compare the performance of the original solutions (3) with W and sharp-
ened (18) with Ws on 5 real and artificial data sets that have been used as bench-
marks for comparing the performance of semi-supervised learning algorithms
by [5]. We used five of the nine data sets made available by the authors of [5]
for the purposes of testing semi-supervised learning algorithms. The data sets
encompass both artificial and real data in a number of different settings, and are
summarized in table 1. More details, and the data sets themselves, are available
at: http://www.kyb.tuebingen.mpg.de/ssl-book/. Each data set has binary
labels, and comes with 24 pre-determined splits, i.e. sets of indices dictating
which data points are to be labelled. Of these, 12 splits each contain 10 ran-
domly chosen labelled points (at least one in each class), and the other 12 splits
each contain 100 randomly chosen labelled points. For each data set, an initial
undirected edge graph W was constructed by making a symmetrical connection
between each point and its k nearest neighbours as measured by Euclidean sepa-
ration in the input space, with k set either to 10 or to 100. Weights were then set

http://www.kyb.tuebingen.mpg.de/ssl-book/
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Table 1. Summary of the five benchmark data sets used

index name points dims comment

1 Digit1 1500 241 artificial images
2 USPS 1500 241 2s and 5s vs rest
3 COIL2 1500 241 images
4 BCI 400 117 small, noisy
5 g241c 1500 241 artificial

for each edge according to the function wij = exp(−s2
ij/σ2) of edge length sij ,

with σ set either to 10 times or to 1 times the median length of the connected
edges (the former setting ensured in practice that all connected weights were
roughly equal, and close to 1, and the latter setting ensured some variation in
the weights). For each of the available splits, we obtain solutions (3) and (18)
for four different smoothing parameter values μ ∈ {0.1, 1, 10, 100}, and record
the ROC scores of the unlabelled outputs fu with respect to the true labels.

The results are summarized in Fig.1. Each pair of subplots corresponds to
one of the five data sets, with results from the splits with 10 labelled points
on the left and from the splits with 100 labelled points on the right. The grey
points show the comparison between the two methods for each of 192 runs (2
settings of k times 2 settings of σ times 4 settings of μ times 12 random splits).
In addition, red crosses show the best setting for each method—performance of
the sharpened method on the 12 splits under the {k, σ, μ} setting for which that
method yielded the best mean ROC score across splits, against performance of
the original method on the 12 splits under its best setting. We can see from
Fig.1(a) that the sharpening modification leads to performance that is equal to
or better than the original algorithm. In some cases the improvement is small
in magnitude, but it is consistent in sign. For data set 2, 3 and 4, in particular,
we clearly see that the majority of grey points lie above the diagonal, indicat-
ing that, for a randomly chosen hyperparameter setting among those explored,
sharpening is very likely to result in easier model selection and improvements
in performance. The sharpening modification tends to gain more improvement
when more labelled points are given. In the subplots of the right column (of
100 labelled points), consistently across the random splits, the best performance
obtained by the sharpened method is better than the best performance obtained
by the original method. We illustrate the algorithms’ hyperparameter depen-
dence in Fig.1(b). From this representation we see that the sharpened method’s
performance is generally equal to or better than the original. We also see that,
for data sets 2, 3 and 4, one of the sharpened method’s advantages lies in its
relative insensitivity to the values of smoothness-loss tradeoff parameter μ. This
relative insensitivity is a desirable property in situations where correct hyper-
parameter selection is a hit-and-miss affair. Table 2 shows the best ROC scores
and the results of the Wilcoxon signed-ranks test (see [11]). Considering the best
averaged ROCs across the splits, the highest scores (the numbers in boldface in
the second column) are obtained by the sharpened method in 9 out of the 10
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Fig. 1. Results: (a) ROC scores for the sharpened method against those for the original
method, across 12 random splits of the data in each panel. Results are shown for
all hyperparameter settings (grey points) and for each method’s best hyperparameter
setting (red crosses). (b) Hyperparameter dependence of the sharpened method using
modified weight matrix Ws (open diamonds) and for the original method using W
(filled circles). Mean ROC scores across the 12 splits are shown as a function of μ (on
the abscissa) and k (blue–solid for k = 10, green–dashed for k = 100). Results are only
shown for σ = 10 (results for σ = 1 follow a roughly similar pattern).
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Table 2. Summary of the results for the five data sets

Datasets Best ROC score (%)
Frequency of

outperformance (#) p-value

original sharpened original sharpened

(1) Digit1
10 labelled 97.13 97.10 200 184 0.6280

100 labelled 99.81 99.84

(2) USPS
10 labelled 85.44 87.60 107 277 0.0000

100 labelled 96.95 98.83

(3) COIL2
10 labelled 73.24 74.49 172 212 0.0006

100 labelled 98.39 98.50

(4) BCI
10 labelled 53.25 53.39 136 248 0.0000

100 labelled 57.51 58.29

(5) g241c
10 labelled 62.05 63.09 173 211 0.0564

100 labelled 75.77 77.51
Total 788 1132 0.0000

cases, with almost similar performance being attained by both methods in the
remaining one. The third column compares the two methods in frequency of
outperformance for the 384 (=2 ×192) paired ROC comparisons per dataset. In
4 out of the 5 datasets, the sharpened method outperformed the original. The p-
values in the last column statistically present the significance of outperformance
of the sharpened method.

5 Conclusion

In this paper, we present a simple yet efficient method for manipulating weight
matrix W based on graph-based semi-supervised learning. By analyzing the ob-
jective function in blockwise fashion according to the four combinations of la-
belled and unlabelled points, we show an optimal condition for W that tells us
which block can be manipulated, and how they may be manipulated, in order
to enhance the flow of activation. This approach provides two main advantages
without high computational cost or resorting to heuristics. For labelled points, it
ensures that the predicted output equals its given label: there is no loss of infor-
mation on labelled data points. For unlabelled points, it preserves the principle of
semi-supervised learning: prediction with manifold structure for unlabelled data
points. This allows us to enjoy the best of both worlds: improved performance
due to “sharpening” of previously “blunted” labelled points and edges (as is also
the case for [24]) and the ability to explore different smoothing settings in search
of the best generalization performance (as in [2]).

For the sake of analytical convenience, the current method takes a very simple,
conventional semi-supervised framework as its basis. However, incorporated into
more sophisticated state-of-the-art algorithms, it has the potential to improve
considerably on their original performance.
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